Please note that our Terms & Conditions and Privacy Notice are applicable.
On Promotion in Online & Essential Services
Pay & Ship
Buy with confidence. Secure payment options & nationwide delivery. Learn more
Filter & refine
Clear All
Results for Online Classes & Tutoring in South Africa in South Africa
In my part time I analyse, interpret and write up chapter 4/5 thesis, in 3-5 days. I am an experienced STATISTICIAN/RESEARCHER and PHD Finalist (University of Pretoria), with 15 plus years’ experience in quantitative analysis. My experience is specifically on cross sectional and longitudinal research (econometric models and survival models) processes. I have also supervised Masters thesis. My profiles online for more
https://www.linkedin.com/in/christopher-manyamba-04490713/
http://oasis.col.org/handle/11599/3934?show=full
https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
https://researchspace.ukzn.ac.za/handle/10413/8822
1. Proposal development: Intro, Literature review, Methodology (study design, approach, sampling, reliability, ethical issues)
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
Whattsapp 0732177216
10mo
5
SavedSave
French and German Tutoring
Bonjour,
Guten Morgen,
Frohes neues Jahr 2024
Je suis Jeanette a French and German
Teacher. I'm a Masters degree holder in Business administration and economics.
I worked in the educational system for seventeen years now.
I'm well travelled and will like to teach French
Or German to individuals or groups of people
I normally start with the grassroots level, intermediate and advanced level.
Please don't hesitate to contact me for your
French or German lessons on the
0027612069565
Bien a toi,
8mo
For your chapter 4 and 5 thesis chapter. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis.
See https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
My Linkdin profile: https://www.linkedin.com/in/christopher-manyamba-04490713/
Also see https://researchspace.ukzn.ac.za/handle/10413/8822
I analyse, interpret and write up Chapter 4 (15-25 pages, or more), which you then discuss in Ch5.
Overall I provide the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
0723548043
1y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
1y
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
1y
In my part time I analyse, interpret and write up chapter 4/5 thesis, in 3-5 days. I am an experienced STATISTICIAN/RESEARCHER and PHD Finalist (University of Pretoria), with 15 plus years’ experience in quantitative analysis. My experience is specifically on cross sectional and longitudinal research (econometric models and survival models) processes. I have also supervised Masters thesis. My profiles online for more
https://www.linkedin.com/in/christopher-manyamba-04490713/
http://oasis.col.org/handle/11599/3934?show=full
https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
https://researchspace.ukzn.ac.za/handle/10413/8822
1. Proposal development: Intro, Literature review, Methodology (study design, approach, sampling, reliability, ethical issues)
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
Whattsapp 0732177216
1y
2
SavedSave
French and German Tutoring
Bonjour,
Bonne et heureuse année 2024.
Guten Morgen,
Frohes neues Jahr 2024
Je suis Jeanette a French and German
Teacher. I'm a Masters degree holder in Business administration and economics.
I worked in the educational system for seventeen years now.
I'm well travelled and will like to teach French
Or German to individuals or groups of people
I normally start with the grassroots level, intermediate and advanced level.
Please don't hesitate to contact me for your
French or German lessons on the
0027612069565
Bien a toi,
7mo
1
SavedSave
For your chapter 4/5 thesis or research paper. Experienced
STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in
quantitative analysis. I am providing the following quantitative analysis and
modelling expertise;
1.
Proposal development
including study design and sampling;
2.
Univariate analysis: Frequencies. Means and
std deviations for continuous data, tables and graphs;
3.
Bivariate analysis:
pairwise correlation, Spearman’s for non-parametric and Pearson’s for
normally distributed data;
4.
For Likert scale data, reliability (Cronbach’s alpha) and
normality tests (Wilk Shapiro
tests, skewness, kurtosis);
5.
Hypothesis testing
-parametric tests e.g. paired t-tests, and non-parametric tests (e.g.
Wilcoxon sign rank, Kruskal Wallis);
6.
Multivariate-Regression analyses which cover
ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS),
Partial/Pooled effects; Factor/Principal component analysis;
7.
Pathway
Analysis and Structural
Equation Modelling (SEM), and its
post estimation results
8.
Time-series,
Econometric Models: Autoregressive
Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL)
family models. The stepwise analysis includes setting data to time series,
white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root
tests (VAR), Vector error correction models (VEC), Granger causality tests;
9.
Survival analysis (epidemiological): Includes
setting data to survival, run descriptive stats with survival analysis family
of analysis. Survival analysis: Censoring, prevalence and incident rates,
regression models e.g. Cox proportionate regression, interactions (log-rank,
and Kaplan Meier survival functions graphs);
10.
Checking multicollinearity/endogeneity-Variance
Inflation Factor (VIF in STATA), or any pre-model estimation;
11.
Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate).
Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a
STATA version 15-30-day trial
1y
2
For your chapter 4/5 thesis or research paper. Experienced
STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in
quantitative analysis. I am providing the following quantitative analysis and
modelling expertise;
1.
Proposal development
including study design and sampling;
2.
Univariate analysis: Frequencies. Means and
std deviations for continuous data, tables and graphs;
3.
Bivariate analysis:
pairwise correlation, Spearman’s for non-parametric and Pearson’s for
normally distributed data;
4.
For Likert scale data, reliability (Cronbach’s alpha) and
normality tests (Wilk Shapiro
tests, skewness, kurtosis);
5.
Hypothesis testing
-parametric tests e.g. paired t-tests, and non-parametric tests (e.g.
Wilcoxon sign rank, Kruskal Wallis);
6.
Multivariate-Regression analyses which cover
ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS),
Partial/Pooled effects; Factor/Principal component analysis;
7.
Pathway
Analysis and Structural
Equation Modelling (SEM), and its
post estimation results
8.
Time-series,
Econometric Models: Autoregressive
Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL)
family models. The stepwise analysis includes setting data to time series,
white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root
tests (VAR), Vector error correction models (VEC), Granger causality tests;
9.
Survival analysis (epidemiological): Includes
setting data to survival, run descriptive stats with survival analysis family
of analysis. Survival analysis: Censoring, prevalence and incident rates,
regression models e.g. Cox proportionate regression, interactions (log-rank,
and Kaplan Meier survival functions graphs);
10.
Checking multicollinearity/endogeneity-Variance
Inflation Factor (VIF in STATA), or any pre-model estimation;
11.
Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate).
Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a
STATA version 15-30-day trial
1y
6
Certificated
Natural Scientist. Statistical Sciences. The South African Council for Natural Scientific Professions
In my part time I analyse, interpret and write up chapter 4/5 thesis, in 3-5 days. I am an experienced STATISTICIAN/RESEARCHER and PHD Finalist (University of Pretoria), with 15 plus years’ experience in quantitative analysis. My experience is specifically on cross sectional and longitudinal research (econometric models and survival models) processes. I have also supervised Masters thesis. My profiles online for more
https://www.linkedin.com/in/christopher-manyamba-04490713/
http://oasis.col.org/handle/11599/3934?show=full
https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
https://researchspace.ukzn.ac.za/handle/10413/8822
1. Proposal development: Intro, Literature review, Methodology (study design, approach, sampling, reliability, ethical issues)
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
Whattsapp 0732177216
7mo
2
I AM A RESEARCHER, PHD in Agricultural Economics and assist students in their assignments on the following: Business Research, Economics, Entrepreneurship, Innovation, Operations and Supply Chain Management, Strategic Human Resource Management, Strategic Financial Management, Strategic Management
Strategic Marketing Management. I also assist with dissertation (proposal writing, data collection process, analysis and write up. Analysis using SPSS and STATA for quantitative and Atals ti for qualitative data.
1y
2
SavedSave
French Tutoring
Bonjour,
Je suis Jeanette a French and German
Teacher. I'm a Masters degree holder in Business administration and economics.
I worked in the educational system for seventeen years now.
I'm well travelled and will like to teach French
Or German to individuals or groups of people
I normally start with the grassroots level, intermediate and advanced level.
Please don't hesitate to contact me for your
French or German lessons on the
0027612069565
Bien a toi,
7mo
1
SavedSave
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
2y
2
For your chapter 4 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 10 plus years’ experience in quantitative analysis. Longitudinal and cross section data analysis methodologies. I have vast experience in large household surveys around SADC countries, have analysed and presented for the African Union as a PhD and independent consultant. For thesis, analysis and interpretation, I also coach through the analysis and interpretation (for ownership). In my part time I am provide the following expertise;
i. Univariate analysis: Frequencies (prevalence’s-epi studies), tables and graphs
ii. Bivariate analysis-correlations (pairwise, tetrachloric, correlograms-in time series);
ii. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares, Partial/Pooled effects; Factor/Principal component analysis;
iii. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank)
iv. For Likert scale data-normality tests (Wilk Shapiro tests, skewness, kurtosis)
iv. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
v. Time series: Autoregressive Conditional Heteroscedastic (ARCH) and Auto Regressive Distributed Lag (ARDL) family models. Stepwise analysis which includes settimg data to time series, white noise detection (stationarity tests), Dick Fuller or PPeroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests.
v. Includes setting data to survival, run descriptive stats with survival analysis family of analysis.Survival analysis: Censoring, prevalence and incident rates, regression models e,g, cox regression, interactions (log rank, and Kaplan Meier survival functions graphs).
vi. Checking multicollenearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre model estimation. Software experience: Excel, SPSS, STATA (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time: In a space of 5 days.
If you need to self tutor STATA You can get a STATA version 15 -30 day trial on https://www.stata.com/customer-service/evaluate-stata/
2y
7
INVES DRIVING SCHOOL
We offer learners licence and driving lessons at Anderson Shaft Street, Johannesburg next to John Voster police station
CODE 08 DRIVING LESSONS
1 * Lessons = R180
5 * Lessons = R900
10 * Lessons = R1800
15 * Lessons = R2700
CODE 10 DRIVING LESSONS
1 * Lessons = R180
5 * Lessons = R900
10 * Lessons = R1800
15 * Lessons = R2700
Code 14 DRIVING LESSONS
1× lesson = R300
5× lesson = R1500
10× lesson =
R3000
Learners Licence R200 until you pass
Pick up and drop off around jhb
Package code 08 (10 Lessons + Car hire) = R2300
Package code 10 (10 Lessons + Truck hire) = R2500
Package code 14 (10 Lessons + Truck hire) = R4500
BRANCHES
1. JHB (CBD)
2. SOWETO, FREEDOMPARK (DEVLAND)
3. TSHIDZINI, (THOHOYANDOU VENDA)
CONTACT US 082 732 4862 or 072 043 4444
2y
Johannesburg CBD1
For your chapter 4/5 thesis or research paper. Experienced
STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in
quantitative analysis. I am providing the following quantitative analysis and
modelling expertise;
1.
Proposal development
including study design and sampling;
2.
Univariate analysis: Frequencies. Means and
std deviations for continuous data, tables and graphs;
3.
Bivariate analysis:
pairwise correlation, Spearman’s for non-parametric and Pearson’s for
normally distributed data;
4.
For Likert scale data, reliability (Cronbach’s alpha) and
normality tests (Wilk Shapiro
tests, skewness, kurtosis);
5.
Hypothesis testing
-parametric tests e.g. paired t-tests, and non-parametric tests (e.g.
Wilcoxon sign rank, Kruskal Wallis);
6.
Multivariate-Regression analyses which cover
ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS),
Partial/Pooled effects; Factor/Principal component analysis;
7.
Pathway
Analysis and Structural
Equation Modelling (SEM), and its
post estimation results
8.
Time-series,
Econometric Models: Autoregressive
Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL)
family models. The stepwise analysis includes setting data to time series,
white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root
tests (VAR), Vector error correction models (VEC), Granger causality tests;
9.
Survival analysis (epidemiological): Includes
setting data to survival, run descriptive stats with survival analysis family
of analysis. Survival analysis: Censoring, prevalence and incident rates,
regression models e.g. Cox proportionate regression, interactions (log-rank,
and Kaplan Meier survival functions graphs);
10.
Checking multicollinearity/endogeneity-Variance
Inflation Factor (VIF in STATA), or any pre-model estimation;
11.
Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate).
Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a
STATA version 15-30-day trial
2y
2
For your chapter 4/5 thesis or research paper. Experienced
STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in
quantitative analysis. I am providing the following quantitative analysis and
modelling expertise;
1.
Proposal development
including study design and sampling;
2.
Univariate analysis: Frequencies. Means and
std deviations for continuous data, tables and graphs;
3.
Bivariate analysis:
pairwise correlation, Spearman’s for non-parametric and Pearson’s for
normally distributed data;
4.
For Likert scale data, reliability (Cronbach’s alpha) and
normality tests (Wilk Shapiro
tests, skewness, kurtosis);
5.
Hypothesis testing
-parametric tests e.g. paired t-tests, and non-parametric tests (e.g.
Wilcoxon sign rank, Kruskal Wallis);
6.
Multivariate-Regression analyses which cover
ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS),
Partial/Pooled effects; Factor/Principal component analysis;
7.
Pathway
Analysis and Structural
Equation Modelling (SEM), and its
post estimation results
8.
Time-series,
Econometric Models: Autoregressive
Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL)
family models. The stepwise analysis includes setting data to time series,
white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root
tests (VAR), Vector error correction models (VEC), Granger causality tests;
9.
Survival analysis (epidemiological): Includes
setting data to survival, run descriptive stats with survival analysis family
of analysis. Survival analysis: Censoring, prevalence and incident rates,
regression models e.g. Cox proportionate regression, interactions (log-rank,
and Kaplan Meier survival functions graphs);
10.
Checking multicollinearity/endogeneity-Variance
Inflation Factor (VIF in STATA), or any pre-model estimation;
11.
Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate).
Turnaround time for analysis, interpretation and write up: In a space of 5 days;
12.
If you need to self-tutor STATA, you can get a
STATA version 15-30-day trial on https://www.stata.com/customer-service/evaluate-stata/ 072 3548043
2y
2
Certificated Natural Scientist. Statistical ScienceFor your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
1y
6
SavedSave
For your chapter 4/5 thesis or research paper. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis. I am providing the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Software experience: Excel, SPSS, STATA EViews (advanced/excellent), EPI Info (intermediate), R (intermediate), SAS (Intermediate). Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
2y
3
For your chapter 4 and 5 thesis chapter. Experienced STATISTICIAN/RESEARCHER and PHD Finalist with 15 plus years’ experience in quantitative analysis.
See https://www.up.ac.za/news/post_1722144-up-student-wins-fellowship-to-study-womens-empowerment-index
My Linkdin profile: https://www.linkedin.com/in/christopher-manyamba-04490713/
Also see https://researchspace.ukzn.ac.za/handle/10413/8822
I analyse, interpret and write up Chapter 4 (15-25 pages, or more), which you then discuss in Ch5.
Overall I provide the following quantitative analysis and modelling expertise;
1. Proposal development including study design and sampling;
2. Univariate analysis: Frequencies. Means and std deviations for continuous data, tables and graphs;
3. Bivariate analysis: pairwise correlation, Spearman’s for non-parametric and Pearson’s for normally distributed data;
4. For Likert scale data, reliability (Cronbach’s alpha) and normality tests (Wilk Shapiro tests, skewness, kurtosis);
5. Hypothesis testing -parametric tests e.g. paired t-tests, and non-parametric tests (e.g. Wilcoxon sign rank, Kruskal Wallis);
6. Multivariate-Regression analyses which cover ordinal, count, categorical and binary outcomes. Ordinary Least Squares (OLS), Partial/Pooled effects; Factor/Principal component analysis;
7. Pathway Analysis and Structural Equation Modelling (SEM), and its post estimation results
8. Time-series, Econometric Models: Autoregressive Conditional Heteroscedastic (ARCH) and Auto-Regressive Distributed Lag (ARDL) family models. The stepwise analysis includes setting data to time series, white noise detection (stationarity tests), Dick Fuller or P-Peroni unit root tests (VAR), Vector error correction models (VEC), Granger causality tests;
9. Survival analysis (epidemiological): Includes setting data to survival, run descriptive stats with survival analysis family of analysis. Survival analysis: Censoring, prevalence and incident rates, regression models e.g. Cox proportionate regression, interactions (log-rank, and Kaplan Meier survival functions graphs);
10. Checking multicollinearity/endogeneity-Variance Inflation Factor (VIF in STATA), or any pre-model estimation;
11. Turnaround time for analysis, interpretation and write up: In a space of 5 days;
If you need to self-tutor STATA, you can get a STATA version 15-30-day trial
2y
Save this search and get notified
when new items are posted!